18,445 research outputs found

    Orbital plasma tests for Harvard OSO-D experiment

    Get PDF
    Orbital plasma tests for OSO-D experimen

    Breaking Kelvin: Circulation conservation and vortex breakup in MHD at low Magnetic Prandtl Number

    Full text link
    In this paper we examine the role of weak magnetic fields in breaking Kelvin's circulation theorem and in vortex breakup in two-dimensional magnetohydrodynamics for the physically important case of a low magnetic Prandtl number (low PmPm) fluid. We consider three canonical inviscid solutions for the purely hydrodynamical problem, namely a Gaussian vortex, a circular vortex patch and an elliptical vortex patch. We examine how magnetic fields lead to an initial loss of circulation Γ\Gamma and attempt to derive scaling laws for the loss of circulation as a function of field strength and diffusion as measured by two non-dimensional parameters. We show that for all cases the loss of circulation depends on the integrated effects of the Lorentz force, with the patch cases leading to significantly greater circulation loss. For the case of the elliptical vortex the loss of circulation depends on the total area swept out by the rotating vortex and so this leads to more efficient circulation loss than for a circular vortex.Comment: 21 pages, 12 figure

    Stabilization, pointing and command control of a balloon-borne 1-meter telescope

    Get PDF
    A 1-meter balloon-borne telescope has been constructed and flown to observe far-infrared radiation from celestial sources. The attitude control systems must perform to the diffraction limit of the telescope for stabilization and have positioning capability for source acquisition. These and associated systems are discussed in detail, as is the command control of the payload as a whole

    Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system

    Get PDF
    In many application domains, conventional e-noses are frequently outperformed in both speed and accuracy by their biological counterparts. Exploring potential bio-inspired improvements, we note a number of neuronal network models have demonstrated some success in classifying static datasets by abstracting the insect olfactory system. However, these designs remain largely unproven in practical settings, where sensor data is real-time, continuous, potentially noisy, lacks a precise onset signal and accurate classification requires the inclusion of temporal aspects into the feature set. This investigation therefore seeks to inform and develop the potential and suitability of biomimetic classifiers for use with typical real-world sensor data. Taking a generic classifier design inspired by the inhibition and competition in the insect antennal lobe, we apply it to identifying 20 individual chemical odours from the timeseries of responses of metal oxide sensors. We show that four out of twelve available sensors and the first 30 s(10%) of the sensors’ continuous response are sufficient to deliver 92% accurate classification without access to an odour onset signal. In contrast to previous approaches, once training is complete, sensor signals can be fed continuously into the classifier without requiring discretization. We conclude that for continuous data there may be a conceptual advantage in using spiking networks, in particular where time is an essential component of computation. Classification was achieved in real time using a GPU-accelerated spiking neural network simulator developed in our group

    Polarization morphology of SiO masers in the circumstellar envelope of the AGB star R Cassiopeiae

    Full text link
    Silicon monoxide maser emission has been detected in the circumstellar envelopes of many evolved stars in various vibrationally-excited rotational transitions. It is considered a good tracer of the wind dynamics close to the photosphere of the star. We have investigated the polarization morphology in the circumstellar envelope of an AGB star, R Cas. We mapped the linear and circular polarization of SiO masers in the v=1, J=1-0 transition. The linear polarization is typically a few tens of percent while the circular polarization is a few percent. The fractional polarization tends to be higher for emission of lower total intensity. We found that, in some isolated features the fractional linear polarization appears to exceed 100%. We found the Faraday rotation is not negligible but is ~15 deg., which could produce small scale structure in polarized emission whilst total intensity is smoother and partly resolved out. The polarization angles vary considerably from feature to feature but there is a tendency to favour the directions parallel or perpendicular to the radial direction with respect to the star. In some features, the polarization angle abruptly flips 90 deg. We found that our data are in the regime where the model of Goldreich et al (1973) can be applied and the polarization angle flip is caused when the magnetic field is at close to 55 deg. to the line of sight. The polarization angle configuration is consistent with a radial magnetic field although other configurations are not excluded.Comment: 14 pages, 15 figures. Accepted for publication in MNRA

    The opposites task: Using general rules to test cognitive flexibility in preschoolers

    Get PDF
    A brief narrative description of the journal article, document, or resource. Executive functions play an important role in cognitive development, and during the preschool years especially, children's performance is limited in tasks that demand flexibility in their behavior. We asked whether preschoolers would exhibit limitations when they are required to apply a general rule in the context of novel stimuli on every trial (the "opposites" task). Two types of inhibitory processing were measured: response interference (resistance to interference from a competing response) and proactive interference (resistance to interference from a previously relevant rule). Group data show 3-year-olds have difficulty inhibiting prepotent tendencies under these conditions, whereas 5-year-olds' accuracy is near ceiling in the task. (Contains 4 footnotes and 1 table.
    • …
    corecore